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Bridging chemical and biological space is the key to drug discovery and development. Typically,
cheminformatics methods operate under the assumption that similar chemicals have similar biological activity.
Ideally then, one could predict a drug’s biological function(s) given only its chemical structure by similarity
searching in libraries of compounds with known activities. In practice, effectively choosing a similarity
metric is case dependent. This work compares both 2D and 3D chemical descriptors as tools for predicting
the biological targets of ligand probes, on the basis of their similarity to reference molecules in a 46 000
compound, biologically annotated chemical database. Overall, we found that the 2D methods employed
here outperform the 3D (88% vs 67% success) in correct target prediction. However, the 3D descriptors
proved superior in cases of probes with low structural similarity to other compounds in the database
(singletons). Additionally, the 3D method (FEPOPS) shows promise for providing pharmacophoric alignment
of the small molecules’ chemical features consistent with those seen in experimental ligand/ receptor
complexes. These results suggest that querying annotated chemical databases with a systematic combination
of both 2D and 3D descriptors will prove more effective than employing single methods.

1. Introduction

The relationship between chemical structure and biological
function is the basis of modern drug discovery and develop-
ment.1,2 Current methods of cellular screening and pharmaco-
genetic profiling can rapidly reveal phenotypic responses to
drugs but do not immediately pinpoint their molecular target.3,4

Affected pathways may require broad arrays of secondary assays
to define the specific binding partner(s) before reaching the goal
of “rationally” optimizing the hit into a potent and selective
lead.5 Streamlining chemogenomics-based discovery,6 through
the assistance ofin silico target fishing, is one of the long-
range goals of this study. Many computational studies that have
been performed to evaluate chemical/ biological relations have
done so from the perspective of “virtual screening”, searching
a small molecule library for compounds with similar activity
to a single, known, biological target.7,8 Our computational study
is designed toward a different experimental goal: identifying
the molecular target for a single chemical entity, or “target
fishing”, based on similarity of a new compound to structures
where activities against a broad panel of targets is already known
(i.e., an annotated compound library).

Ongoing efforts to combine and curate databases relating large
numbers of diverse chemical structures with their biological
activities hold the promise of revealing patterns that provide
new insight into the molecular features responsible for such
activities. Examples of those databases are manifold, such as
the StARLITe database,9 BioPrint,10 and WOMBAT.11 Prelimi-
nary success has recently been reported from combining large
data sets.12 However, effective use of such databases depends
on having reliable methods of relating the chemical structure
of the query compound to the reference compounds in the
database. Many methods of assigning and quantifying molecular
similarity exist and have been recently reviewed elsewhere.13

To be effective in a large pharmaceutical environment, an

optimal method needs to be fast and sufficiently robust to
process millions of similarity calculations. A common technique
for high throughput cheminformatics analysis is the reduction
of a given molecular structure into a set of “descriptors” that
can be rapidly compared and evaluated numerically.

Existing 2D methods to describe molecules, which are based
solely upon the topological connectivity of a molecular structure,
are very fast given that the “problem” of exploring the
conformational space is ignored. It is expected that such methods
would be useful for clustering similar compounds,14 or selecting
diverse subsets from large libraries,15 but these methods are also
surprisingly effective for “virtual screening” of actives from
large compound sets using the structures of a small number of
known actives as probes.2,16,17 Although 3D methods are
computationally more expensive due to a need to consider
conformers, tautomers, charge distribution, alignment, etc., they
have arguably performed less well in comparative virtual
screening exercises,18,19 though there are exceptions.20-24 It
seems intuitive that 3D methods would include greater informa-
tion since the binding between a ligand and receptor is a 3D
event. It should be noted that early 2D methods such as Daylight
or Unity fingerprints were initially designed to find “more of
the same” while 3D methods can enrich scaffold diversity.
Recent work has shown the cost/benefit appears to be case
dependent.25 One goal of this work, is to examine methods for
predicting a chemical probe’s biological target based upon
similarity to a reference compound (in silico “target fishing”).
A second goal is to examine the relation of ligand-based 3D
alignments to actual 3D receptor binding. We are particularly
interested in identifying relations between novel chemical
classes, through “scaffold hops”.26,27 In this study, we have
tested two different 2D similarity methods (Scitegic’s Extended
Connectivity Fingerprints, and MDL’s Public Keys)28,29and one
3D similarity method (FEature POint PharmacophorS)30 using
identical data to assess both overall accuracy, and versatility.
Performance of the methods is specifically examined for natural
products and compounds without structural neighbors, single-
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tons. Singletons are inherently challenging for similarity meth-
ods. Specifically, we have examined potential for complemen-
tarity between different descriptor types, by varying relevant
information (that is, similar molecules) present in the database.
One hypothesis, supported by the results, is that 2D methods
are favored in case of close analogues, but that 3D methods
offer advantages below a certain similarity threshold.

2. Methods

(A) Database, Bioactivity Data, and Database Preparation.
WOMBAT 2005.1 (WOrld of Molecular BioAcTivity) database.,11

containing over 100 000 unique structures described as SMILES
and over 240 000 biological activities in separate ISIS databases,
was merged into a single delimited text file for manipulation and
analysis in PipelinePilot 5.0.28 To reduce artifacts from nonspecific
binding, only those compounds having measured IC50 activity <30
µm were used in our current analysis. The final groomed database
contained 47 505 unique chemical structures associated with 544
biological targets. The frequency of molecules affecting specific
targets ranged from 1281 to 1. A target class with only 1 member
cannot be located with our procedure because “self” is removed
from the comparison. However, they were left in to serve as decoys
during the search.

(B) 2D Target Fishing: MDL Structural Keys and ECFP_6
Fingerprints. I. All WOMBAT: The 2D similarity protocols, using
each descriptor type, were run against the groomed database using
the complete set of 47 505 chemical structures as probes.

II. 5%WOMBAT: A smaller probe set of 2351 molecules
reflecting a randomly chosen 5% of the entire chemical library was
generated using the Random Percent Filter in Pipeline Pilot. Second
runs against the full database were performed with the 2351
molecules set using both 2D descriptor types.

2D descriptors for all compounds were computed using both
MDL public keys and SciTegic’s Extended Connectivity Finger-
prints (ECFP_6) in Pipeline Pilot. Pairwise similarity comparisons
between the compounds were done with SciTegic’s Tanimoto
component. Both the first and second “nearest neighbor” for each
probe, with Tanimoto similarity<0.99, were flagged for subsequent
evaluation. Only the first nearest neighbor was used as the reference
compound for target identification and numerical scoring.

(C) 3D Target Fishing: FEPOPS.All 47 505 unique com-
pounds were input as SMILES strings. FEature POint Pharma-
cophoreS (FEPOPS) were calculated as described below and stored
as text in a 3D descriptor database (3DDD) yielding 815 676 records
with compound IDs and associated feature point information.
Similarity was determined by calculating Pearson correlations
between the four atomic feature points of each probe/reference
pair.31

I. All WOMBAT: 3D analysis was not run on the full data due
to computational expense.

II. 5%WOMBAT: The same 2351 chemical structures, used for
the 2D comparison, were expanded with all FEPOPS conformer/
tautomers, as described below (40 852 entries), and compared to
the residual set of 774 824 descriptors. (Since we are search the
database against itself, if probes are not removed the algorithm will
find the probe itself as the closest reference structure.) The single
compound having the maximal Pearson correlation of FEPOPS
descriptors to the probe was selected as the reference for target
assignment. Analysis of the 40 852× 774 824 system takes
approximately 17 h on our Pipeline Pilot server.

The FEPOPS descriptors were computed for each database entry
according to the method of Jenkins et al.30 Using this method,
compounds are preprocessed to generate 3D structures, assign
protonation states, enumerate tautomers, and calculate partial
charges and atomic logP values. Multiple conformers are generated
by systematic rotation of flexible bonds. Ligand atoms are
partitioned into fourk-mean clusters based upon their spatial
coordinates. Centroids are defined from the atoms of each cluster.
Partial charges, logP, and hydrogen bond donors and acceptors of
the atoms belonging to each cluster are summed and encoded into

the centroids to create “feature points”. The distances between
feature points are recorded after sorting on the basis of quadrupole
directionality.K-medoids clustering of feature points is performed
to find a smaller number of representative conformers. Up to seven
conformations for each of five tautomers may be retained, making
a maximum of 35 different 3D structures possible for each unique
2D chemical entry.

(D) Fishing for Chemical Diversity with 3D Descriptors. I.
Nearest Neighbor Misses (NNmiss). A subset of the probes from
the “All WOMBAT” dataset that did not achieve target matches
using 2D similarity criteria (see Results) was selected for additional
3D searching. The rationale for working with this subset was 3-fold.
First, we wanted to assess 3D performance in cases where 2D fails.
Second, the smaller number of probes reduced computing times
and allowed for multiple conditions to be examined as described
in the next section. Third, using a randomly selected subset of the
total nearest neighbor misses as probes left the remainder of the
2D misses in the 3DDD. Since certain target classes have
representatives with low 2D similarity in the parent database, this
criteria was important for reasonable evaluation of 3D performance
(see Discussion).

II. Similarity Filters. To explore the added value of the 3D
FEPOPS method for finding correct probe/reference pairings with
low structural similarity, the NNmiss set of probes (see Results
and Discussion) was run multiple times against the 3DDD with
different filters. The initial test ran the NNmiss probe set against
the full 3DDD with only the probes removed. Separate runs
subsequently removed sets of compounds having similarity scores
to the probes greater than ECFP 0.85, MDL 0.85, MDL 0.80, and
MDL 0.60 from the 3DDD when searched.

III. Probe for related chemistry/biology: ATP WOMBAT. A
typical prospective exercise for “target fishing” would be to use a
single molecule with observed activity as a probe to identify possible
binding partners. As an example, FEPOPS descriptors were
calculated for ATP and used to identify potential targets based upon
3D similarity to other molecules in the WOMBAT 3DDD. The
use of such a highly flexible probe molecule was intended to explore
3D’s ability to located correct functional targets based upon difficult,
low similarity, reference structures.

(E) Modeling of 3D Ligand Alignments in Biological Space.
I. Analysis of Biostructural Correlation. Molecular pairs with correct
target matches from FEPOPS 3D NNmiss comparisons were output
from Pipeline Pilot as SD files and input to MOE 2005.06 for
structural analysis.32 The goal of this exercise was to examine the
binding mode for probe/reference drug pairs having dissimilar
chemical scaffolds, but similar biological activity. A custom SVL
script was used to search the Protein Data Bank (PDB) for protein
targets that contain bound ligands with high structural similarity
to probe/reference pairs identified by FEPOPS.33 PDB searching
was performed using the prebuilt PDB_05_04.mdb as provided in
MOE 2005.06.

II. Mapping of FEPOPS Centroids. Atom IDs associated with
feature points used for alignments were output from FEPOPS as
mol2 files. These atom IDs were used to define centroids associated
with a crystallographic or modeled ligand structures using Unity
in Sybyl7.1. For the experimental systems described below, a spatial
constraint was projected from each centroid and color coded to
match the FEPOPS assignment. (The current version of the FEPOPS
algorithm returns a mol2 with the atom IDs for the fit conformer/
tautomer but not the actual coordinates. A feature returning
coordinates with IDs is under development.)

a. Modeling of Estrogen Receptor Ligands. Crystallographic
coordinates of the estrogen receptor (ER) complexed with both the
molecular probe 17-â-estradiol (Scheme 1), 1a52.pdb, and the
reference compound diethylstilbestrol (2), 3erd.pdb, were down-
loaded from the PDB. Backbone atoms of residues Ser305-Phe461
(628 atoms) were aligned using the “Match” function in Syby 7.1
with an RMSD of 0.86A. FEPOPS centroids were mapped directly
to the aligned experimental structures.

b. Modeling of Retinoid Receptors Ligands. A 3D model of the
molecular probe targretin (Scheme 2, compound5) was generated
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by modifying the cyclopropyl moiety of compound LG268 (8) as
found in complex with the receptor in 1h9u.pdb34 to the alkene of
5. The new model was minimized using the Tripos force field to a
gradient cutoff of 0.05 kcal/mol. The minimized model of5 differed
from the bound structure of8 with a RMSD of 0.21A for all
conserved atoms and was used to map FEPOP centroids.

The reference compound7 was built in MOE and minimized
using the MMFF94x to a gradient cutoff of 0.05 kcal/mol. A
stochastic search of conformational space was performed in MOE
with the following settings (bond rotation bias-30, Cartesian
Perurbation Delta 0.001, Cartesian Minimization RMS Gradient
0.01, Energy Cutoff 7, Conformation Limit 1000, Failure Limit
20, Iteration Limit 1000, RMS Tolerance, MM Iteration Limit 200).
Results were aligned, yielding two conformational clusters. FEPOPS
centroids were mapped to the two lowest energy conformations
representing both conformational clusters (relative energy difference
1.14 kcal/mol).

FEPOPS centroids were mapped to each conformer, and each
was aligned to the centroids of5 and evaluated as described in
Results and Discussion.

c. Modeling of ATP/Balanol. Coordinates of protein complexes
1atp.pdb and 1bx6.pdb were downloaded from the PDB. Backbone
atoms of residues Val15-Trp196 (728 atoms) were aligned using
the “Match” function in Sybyl 7.1 with an RMSD of 0.92A.
FEPOPS centroids were mapped directly to the aligned experimental
structures.

3. Results and Discussion

2D and 3D Target Fishing. The 2D Nearest Neighbor
(2DNN) analysis was performed using MDL and ECFP descrip-
tor keys as described in Methods and was run on both the full
and 5% data sets. Raw numerical results are presented in Table
1. A control comparison illustrating compound distribution in
the All WOMBAT and 5% WOMBAT dataset as a function of
similarity are shown in Figure 1. 3D FEPOPS results using the
5%WOMBAT probe set and the 2DNN (ECFP-6) “Miss Target”
with applied 2D filters are also given in Table 1.

Figure 1 shows the composition of both the full database and
the 5% set, using both 2D descriptors. MDL and ECFP_6 keys
were used to calculate Tanimoto similarity between each
compound and its nearest neighbor in the full (blue) and 5%
(red) WOMBAT data sets as described in methods. The
compounds were placed into one of 10 bins based upon
similarity scores between 0 and 1. The MDL keys cluster 80%
of compounds in both the full and 5% database into the bin of
0.90 or greater similarity. The number of compounds with
nearest neighbors less than 0.80 similarity represent less than
5% of the total databases. ECFP keys show that the greatest

Scheme 1

Scheme 2 Table 1. Results of “Target Fishing” Using 2D and 3D Chemical
Descriptors

total
probes

total
reference

match
target

miss
target

%
success

All WOMBAT 47505 47505
2DNN (ECFP-6) 47505 47505 42511 4994 89.5
2DNN (MDL) 47505 47505 41224 6281 86.8
3D FEPOPS - - - - -
5% WOMBAT 2351 47505
2DNN (ECFP-6) 2351 47505 2118 233 90.0
2DNN (MDL) 2351 47505 2046 305 87.0
3D FEPOPS 2351 45154 1588 768 67.5
NNmiss 339
2DNN (ECFP-6) 339 47505 0 339 0
FEPOPS- self-filter 339 47166 109 230 32.1
FEPOPS< 0.85 ECFP filter 339 46933 91 248 26.8
FEPOPS< 0.85 MDL filter 339 43689 69 270 20.3
FEPOPS< 0.80 MDL filter 339 41103 61 278 18.0
FEPOPS< 0.60 MDL filter 339 5626 13 326 4.0
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population of neighbors has similarity between 0.70 and 0.80
with a distribution on either side of that maximum. Like that
shown with the MDL keys, there is a small population of
compounds in the database that have no similar neighbor, the
singletons (<0.40 ECFP,<0.80 MDL). The similar distribution
of molecular pairs from this figure, along with the numerical
results given in Table 1, suggests that the 5% set adequately
represents the full dataset, for use in the 3-way comparison
including the 3D method.

Figure 1 also illustrates that there is significant difference
between the ECFP fingerprints and MDL public keys descrip-
tors. The MDL public key method was one of the first and is
still a widely used tool in cheminformatics.29 The “Public” keys
describe a chemical entity based upon the presence or absence
of 166 substructural fragments from a predefined library. The
Extended Connectivity FingerPrint (ECFP) is a representation
assigned based upon each atom and its structural neighbors and
belongs to the group of circular fingerprints.28,35The fingerprint
is built iteratively by adding bits that represent larger and larger
substructures to the features from all the previous steps.
Accordingly, ECFP may assign thousands or millions of bits
to describe a given molecule. The difference shown between
Figure 1a and 1b reflects this variation of assignment method
used. It should be noted that the lower Tanimoto similarity
values for ECFP relative to MDL is a function of different
scales. Tanimoto values should only be compared when
computed using the same method. The granularity of separation
between similar compounds is much greater for the ECFP
method than the MDL method, but, probably due to the
congeneric nature of our data, this does not significantly affect
performance. [See Table 1: All WOMBAT Match Target (ECFP
42 511 correct, MDL 41 224 correct)]. Given a differently
distributed set of probes, they may not perform equally. For
example, in a study of similarity-based virtual screening using
MDDR compounds, ECFP circular descriptors were found
superior to structural key descriptors.17, 35

The performance of both types of 2D descriptors in our 5%
WOMBAT analysis (success ECFP-6 90.0%, MDL 87.0%) may
be elevated due to the composition of the reference database.
Since WOMBAT is primarily comprised of congeneric series
from chemistry programs reported in the literature, the high
percentage of molecules with a close 2D neighbor and same
target is to be expected. If our probes had not been pulled from
the same congeneric sets, it is likely that there would be at least
a small reduction in overall performance of the 2Din silico
methods.

The 3D FEPOPS analysis was performed using the same 5%
probe set as was used for the 2D analysis. A cursory examination
of the raw percentage of successful results returned from our
comparative exercise (ECFP 90%, MDL 87%, FEPOPS 68%)
may tempt one to conclude thatin silico methods for target
fishing are highly effective, that 2D descriptors significantly
outperform 3D, and that there is little difference between the
2D methods tested.Deeper analysis reVeals important qualifiers
to those three assertions.

Figure 2 highlights the relative performance of each of the
2D descriptors compared to the 3D method based upon the
topological similarity between the probe and reference com-
pound used to determine its target. Tanimoto similarity for 1588
correct 3D FEPOPS matches was computed using both ECFP-6
and MDL descriptors and plotted beside the results obtained
using that 2D method. Light green and dark green bars illustrate
the comparable performance of ECFP keys for prediction of
targets in both the full WOMBAT database and the 5% random
sample. The yellow bars associated with the 3DMS(FEPOPS)
pairing show low correlation with 2D similarity. In fact,
FEPOPS finds approximately 75% correct matches across the
most populated chemistry space, 0.4-1.0 ECFP (see Figure 1
and discussion in text). The performance of 3D(FEPOPS)
exceeds the 2D in correct matching for similarity pairings less
than 0.4 ECFP. The blue bars, in Figure 2b, showing correct
matching of target pairs using MDL descriptors marks dra-
matic decline in performance with decreasing similarity. The
3D(FEPOPS) method out performs the MDL 2D descriptors
for values less than 0.80 MDL. The similarity dependence of
2D methods is also suggested by results from a recent study
which built multiclass Laplacian-modified naive Bayesian
models trained on WOMBAT using ECFP keys but probed with
MDL Drug Data Report (MDDR) compounds.36 That study
reported a 77% success for prediction of targets, however,
drawing a direct numerical correlate from that work is compli-
cated by inherent differences of annotation between the two
databases used and details of data preparation.

To test the potential of 3D as a compliment for 2D methods,
we randomly selected a small subset of the compounds that
failed to match using 2DNN (ECFP-6) (NNmiss) for further
FEPOPS analysis. The raw numerical results for all cases are
presented in Table 1. For the NNmiss set with only a “self”
filter, 3D resulted in 32.1% success compared to 0% for 2D. A
detailed examination of these results showed that the matches
found by 3D were still quite similar in 2D chemical space. As
one of our goals was to explore the 3D method’s ability to bridge

Figure 1. Comparison of data sets used in target exercise. Heights of blue bars indicate the fraction of molecules, in all of WOMBAT, having a
nearest neighbor (NN) with similarity greater than or equal to the range represented by theX-axis value. Height of red bars displays the proportion
of similar molecules in a randomly selected subset as compared to all of WOMBAT. The close correlation using both MDL and ECFP descriptors
suggests that results from searches performed using the 5% subset can represent results from the whole database.
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distant chemical spaces that share biological function, we
systematically removed molecules with 2D similarity to the
probe from the reference database before searching. Consistent
with the population distributions of similar compounds shown
in Figures 1 and 2 and discussed earlier, we found that the results
of filtering above the 0.85 level using either 2D descriptor did
not return appreciably better structural diversity. There were a
sufficient number of similar molecules left in the database for
3D to pick them as the closest match. When we used MDL
filters that removed all molecules from the 3DDD with similarity
less than 0.80 from reference set, the results changed signifi-
cantly. The full results set with structural drawings and 2D
Tanimoto indices for the 3D similar pairs in the 0.80 and 0.60
analysis are shown in the Supporting Information (SI).

The idea that a ligand centric 3D method may play a role in
understanding the similar biological activity of structurally
dissimilar drugs has precedent in the literature. Inverse docking
protocols have been used to identify potential targets, using small
molecule probes,37 but this is limited by the availability of
receptor structures for the targets of interest. Pharmacophore
and 3D-QSAR-based methods have also shown promise for both
identification of potential nontarget interactions and scaffold
hopping within a given target but have a dependence upon the
external knowledge used to train the models.38,39 In the case of
target fishing, one may not have external data, and the target
information would need to be decoded from a single chemical
probe. Although not explicitly attempting target identification,
others have projected distance-based pharmacophoric features
from the topology of a probe21,26 or used explicit shape and
electrostatics as descriptors for recovering actives.24,40FEPOPS
are an inherently fuzzy description of a molecules potential
shape(s) and chemical space. As described in Methods and
earlier work by Jenkins et al., the feature points are representa-
tive of clusters of conformations available to different tautomers
of the small molecule.30 This approach is very fast compared
to 3D-QSAR or structure-based methods and can compare all
tautomer/conformer representations of a single probe to all
815 676 records of our 3DDD to produce a ranked alignment
of features in approximately 2 min. In the current application
of the method, each representation holds four spatially separated
feature points that are associated with specific atoms of the small
molecule. We hypothesized that the maximally overlapped
feature points derived from exploring the chemistry space of
molecules that affect the same target should correlate with the
biological space of the actual target.

To test FEPOPS ability for predicting a biologically relevant
pharmacophore from only the chemical description, we searched
for examples having experimental crystal structure complexes
that contained both our probe and reference structures.

Estrogen Receptor.Endogenous estrogens such as estradiol
(E2) (1, Scheme 1) exert their physiological effects by binding
to estrogen receptors (ER), inducing nuclear translocation, and
increasing transcription.41 The synthetic nonsteroidal compound
diethylstilbestrol (DES) (2) found by our 3D target fishing
protocol also binds to ER with high affinity and similarly
increases transcriptional events. By mapping FEPOPS-defined
centroids onto the structural complexes of E2 and DES bound
to ERR, we can see the similar alignment of chemical features
associated with the program’s correct prediction of biological
target, Figure 3a,b.42,43 The coloring scheme (red, green, blue,
violet) represents the algorithm’s assignment of feature point
(FP) number based upon the chemical properties of the
underlying atoms. Atoms defined as FP 1 for each these
compounds are found similarly located in a charged, polar
environment of the receptor. The atoms assigned within FP 2
(green) present a hydrogen bond donating group within an
otherwise hydrophobic portion of the site. Of course, the
symmetry of DES makes distinction between atoms of FP 1 vs
2 and FP 3 vs 4 only possible relative to its alignment with the
asymmetry of E2. The significant differences of structural
scaffolding presenting FP 3 (blue) and FP 4 (violet) in the two
molecules highlights the utility of the 3D method. The 2D
Tanimoto similarities between these molecules are 0.42-MDL
and 0.13-ECFP while the 3D Pearson correlation of the feature
points is 0.91.

We immediately questioned why the 2D similarity had
erroneously predicted the target given such a heavily studied
system as ER. Compounds3a and 3b of Scheme 1 with
similarities of 0.62, 0.60 (ECFP_6) 0.89, 0.97 (MDL) were the
first and second nearest neighbors of E2 (1). It has been shown
that the estrogenic properties of E2 are diminished by O-
methylation at the 2 position, and other substitutions, such as I
or Me, likewise change the binding preference of the compounds
from ER to tubulin.44 The 3D-FEPOPS alignments of these
molecules with Pearson coefficients of 0.89 and 0.83 reverses
the orientation of the fused ring system 180° along the axis
between the diols, suggesting that these molecules would not
have the same binding mode. The large effect of small changes
at the 2-position upon target specificity underscores the 3D
nature of the binding event and an inherent limitation of 2D

Figure 2. 2D and 3D success for target prediction as a function of 2D similarity. The similarity between probe and reference pairs used to
successfully predict biological targets are compared measures of 2D similarity. The 2D similarity of matching pairs obtained using 3D FEPOPS
were calculated using ECFP-6 (a) and MDL public keys (b). The 3D FEPOPS results are displayed as gold bars on the same graph with results
from the particular 2D method.
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similarity descriptions alone. Likewise, compound4 is a
variation of the clinical antiestrogen Tamoxifen that builds upon
the structural framework of compound2. Although4 can bind
similarly to2, additional bulk at the 7 position induces positional
change of a helix within the receptor such that it inhibits the
binding of a coactivator peptide needed for downstream
signaling.43 This general idea of directed 3D effector regions is
expanded in the next example.

RXR Receptor.The retinoid receptors, characterized by the
subfamilies of retinoic acid receptors (RAR) and retinoid X
receptors (RXR), serve as obligate binding partners in many
cell signaling pathways affecting, cell differentiation, prolifera-
tion, and tissue homeostasis.45 Two forms of retinoic acid are
primarily responsible for the varied biological response.All-
trans-retinoic acid (ATRA) binds exclusively to RAR, while
9-cis-retinoic acid (9-cis-RA) is primarily responsible for RXR
signaling along with RAR activation. Improving selectivity of
retinoid targeted drugs is pivotal for improving their medical
use.45,46

Targretin (5), shown in Scheme 2, was one of the earlier
molecules discovered with selectivity for the RXR family of
receptors,47 and was incorrectly assigned RAR activity based
upon 2D similarity to the weak RAR antagonist6.48 FEPOPS
correctly assigned RXR binding to5 through identification with
compound7, also known to be RXR selective,49 as the closest
3D match. Although Tanimoto scores of 2D similarity (0.53-
MDL, 0.09-ECFP_6) are very low, the Pearson coefficient of
distances between the aligned FEPOPS of5 and7 is >0.92. It
is important to note that only 22 molecules annotated as RXR
specific exist in over 41 000 compounds queried. The correct
selection of this target has a less than 1:1800 chance of occurring
randomly. The 3D method appears to be locating some
significant chemical/biological relationships that are not obvious
from the underlying 2D structure. Figure 4 illustrates the
FEPOPS defined overlap in the context of the RXRâ receptor.
Importantly, FP one, two (red and green) and three, four (blue
and violet) align in a way consistent with the bent cis geometry
of its endogenous ligand.50 As described in Methods, our probe

Figure 3. FEPOPS chemical space alignment in experimental biological space. Estrogen receptor (ER) agonists (a)â-estradiol as bound in 3erd.pdb
and (b) diethylstilbestrol; DES, as bound in 1a52.pdb. Centroids, displayed as 2.5 Å diameter spheres, were computed from the crystallographic
coordinates using the FEPOPS feature point atom definitions represented in the color coded structural drawings as described in the main text.

Figure 4. Chemical feature points in receptor space as models of biological function. FEPOPS centroids of the RXR selective agonist5 were used
to align the RXR selective antagonist7 (see Scheme 2) in the context of the biological receptor. Retinoid receptor (RXR alpha) agonists probe (a)
targretin and top FEPOPS hit; (b) diethylstilbestrol, DES, as modeled into structure 1h9u.pdb. Compound5 was modeled into the protein structure,
as described in Methods, using the bound ligand surrogate shown. Centroids, displayed as 2.5 Å diameter spheres, were computed from the model
coordinates using the feature point atom definitions as represented by the color coded structural drawings. The FEPOPS centroids defined by the
low energy conformations of6 were used to position the molecule in the binding site.
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5 was modeled using the complex of structurally similar LG268
(8) with RXRâ;34 however, the unusual scaffold of7 was not
available in the PDB. We used the two best scoring FEPOPS
alignments to define centroids for the lowest energy conforma-
tions of 7.51 An internal energy difference of<2 kcal/mol
between the conformers suggest that either might be viable
candidates for binding. Figure 4 illustrates the two conformers
(7ab) and the color coded atom alignments. Although atom
assignments of FP 1 and 2 are identical in the 2 top scoring
alignments, free rotation between the substituted phenyl rings
of 7 allows two different, high scoring solutions for FP 3 and
4. The reversal of FP 4 and FP 3 suggested by the top two
predicted alignments places the 3-fluoropropyl moiety of7 either
into or out of the binding pocket. Without an external reference,
the FEPOPS results would best suggest the alignment of FP 1
and 2 but allow two options for FP 3 and 4. Given external
knowledge gained from the ER systems, we can present a
hypothesis. Compound5 is a selective agonist for RXR while
7 is an antagonist, a situation analogous to DES,2, and OHT,
4. The modeled binding mode of7b illustrated in Figure 4
projects the 3-fluoropropyl moiety out of the binding groove in
the same receptor space relative to5 as the side chain of4 is to
2 in experimental solutions of the ER complexes.43 That
comparison of Shiau et al. suggests that antagonism in ER results
from ligands that bind similarly to agonist, but with additional
molecular features that disturb positioning of coactivating helix
12 responsible for downstream signaling. The tissue specific
agonism/antagonism of various drugs is likely due to noncon-
served protein side chain residues, outside the binding groove,
that alter the position of the antagonizing feature relative to the
ligand’s core. Since RXR also requires alignment of its helix
12 outside the pocket for activation, a similar mechanism of a
3D-directed effect seems plausible.

PKA Receptor-ATP/Balanol. Given the initial success
using 3D to fish WOMBAT for targets associated through
dissimilar scaffolds, we cast a larger net using ATP as a probe
and pulled back the top 30 targets predicted by FEPOPS.
Analysis of scaffold diversity associated with correct matches
revealed that three of the pairings, PKA, PKC-beta-1, and PKC-
eta, were a variation of the same scaffold containing no
phosphates, adenine, or ribose moieties, balanol. Figure 5 shows
the FEPOPS alignment along with the crystallographic align-
ments of ATP and balanol bound to PKA (1atp.pdb, 1bx6.pdb).
The natural product, balanol, is a potent inhibitor of serine and
threonine kinases that competes with ATP for the same binding
site. Detailed descriptions comparing the interactions of each

ligand with complimentary residues of the protein have been
given previously.52 Although FP 2-4 have ligand/side-chain
interactions that map directly across the two complexes, the
negatively charged atoms of ATP’s FP1 (red) accepts hydrogen
bonds from donating side chains in the bottom of the pocket,
while balanol’s FP1 atoms accept hydrogen bonds from
backbone amides of the flexible glycine rich loop above the
ligands. This pharmacophoric overlap illustrates the utility of
chemical descriptors that are not dependent upon the graph of
the molecules. By searching flexible chemical space for
3-dimensional alignments, the method has found nonobvious
ways of bridging the biological space of the target molecule.
This appears particularly important for this system that involves
significant spatial repositioning of the protein binding site. The
“fuzzy” nature of the feature point alignment is a strength that
allows it to accurately describe the general receptor environment
of even flexible targets such as kinases. The enhanced perfor-
mance of a different ligand-based 3D method compared to
docking methods used for CDK2 supports the general usefulness
of such an approach.25

4. Conclusions

We have used 2D and 3D methods of chemical description
to search an annotated chemogenomics database for relationships
to specific biological targets. We have shown that high 2D
chemical similarity to a reference structure is a very good
predictor of similar biological targets; however, there are limits
to that effectiveness. This work shows that ECFP-6 descriptors
sharply decline in predictive efficacy for neighbors with
Tanimoto similarity indices less than 0.40 while MDL public
keys decline at indices<0.80. The 3D FEPOPS method of
description tested here was not able to achieve as high a
percentage of correct prediction compared to 2D methods at
similarity thresholds higher than those just described. However,
the 3D method did outperform the 2D method below those
thresholds, escaping clear correlation of performance to the
underlying similarity of the chemical graph. These target fishing
results have analogy to earlier experiments which show in-
creased enrichment of chemotypes in 3D vs 2D virtual screen-
ing.30,53,54This is of particular importance when the chemotype
of the query is missing from the reference database. The 3D
method also demonstrated an ability to align chemical features
in space similarly to those found in biological complexes.
Though successful, a caution is raised by the RXR example
that the whole molecule overlap of chemical space is not
necessarily the best descriptor of biological function. A knowl-

Figure 5. Cyclic AMP-dependent protein kinase (PKA) with bound ligands. (a) ATP as found in 1atp.pdb, and (b) balanol in 1bx6.pdb. The color
coded chemical drawings of each molecule illustrate the atomic alignments derived during the 3D FEPOPS target fishing protocol. The corresponding
colored spheres, of 3A diameter, illustrate the positioning of FEature POint PharmacoPhoreS when mapped into the crystallographic coordinates.
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edge-based distinction between a reference chemical binding
and effecting regions may be required to separate functions such
as antagonism and agonism. We have only tested one method
of 3D description here. More extensive studies, comparing
several 3D methods, may lead to overall improvements in
performance. We believe additional work is merited, as our
results support the idea that slower 3D methods can be
effectively combined with 2D.

Although 90% of the tested compounds were correctly related
to their biological target by at least one of the 2D methods, the
analysis points out that the high performance was in a large
part due to the congeneric nature of the data used. It also
indicates that more than one neighbor should be considered for
target identification in actual project work. Likewise the
FEPOPS 3D method was able to correctly predict targets for a
subset of those failing 2D comparison, but the overall lower
fidelity indicates that its use should be reserved for second phase
analysis in the case of very low neighborhood similarity. Clearly,
no single method of chemical description is “best” in terms of
functionally bridging a molecule with its biological activity.
Fortunately, large compilations of chemical and biological data
such as WOMBAT and others may provide sufficient test sets
for developers to identify and correct specific deficiencies in
new versions. We expect that combining different methods of
2D and 3D description with external learning frameworks such
as Bayes Affinity Fingerprints55 will be particularly useful for
defining the particular chemical features responsible for biologi-
cal activity and the spatial alignment necessary for their function.
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