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Bridging chemical and biological space is the key to drug discovery and development. Typically,
cheminformatics methods operate under the assumption that similar chemicals have similar biological activity.
Ideally then, one could predict a drug’s biological function(s) given only its chemical structure by similarity
searching in libraries of compounds with known activities. In practice, effectively choosing a similarity
metric is case dependent. This work compares both 2D and 3D chemical descriptors as tools for predicting
the biological targets of ligand probes, on the basis of their similarity to reference molecules in a 46 000
compound, biologically annotated chemical database. Overall, we found that the 2D methods employed
here outperform the 3D (88% vs 67% success) in correct target prediction. However, the 3D descriptors
proved superior in cases of probes with low structural similarity to other compounds in the database
(singletons). Additionally, the 3D method (FEPOPS) shows promise for providing pharmacophoric alignment
of the small molecules’ chemical features consistent with those seen in experimental ligand/ receptor
complexes. These results suggest that querying annotated chemical databases with a systematic combination
of both 2D and 3D descriptors will prove more effective than employing single methods.

1. Introduction optimal method needs to be fast and sufficiently robust to

The relationship between chemical structure and biological Process millions of similarity calculations. A common technique
function is the basis of modern drug discovery and develop- for h|g_h throughput chemlnformatlcs analysis is th_e reduction
ment-2 Current methods of cellular screening and pharmaco- ©f & given molecular structure into a set of “descriptors” that

genetic profiling can rapidly reveal phenotypic responses to €an be rapidly compared and evaluated numerically.

drugs but do not immediately pinpoint their molecular tafget. Existing 2D methods to describe molecules, which are based
Affected pathways may require broad arrays of secondary assayssolely upon the to_pologlcal connectivity of a molecular §tructure,
to define the specific binding partner(s) before reaching the goal @re very fast given that the “problem” of exploring the
of “rationally” optimizing the hit into a potent and selective conformational space is ignored. It is expected that such methods

lead Streamlining chemogenomics-based discofahyrough vvpuld be useful for cIustering similar compouridsr selecting

the assistance dh silico target fishing, is one of the long-  diverse subsets from large librari€dut these methods are also
range goals of this study. Many computational studies that have Surprisingly effective for “virtual screening” of actives from
been performed to evaluate chemical/ biological relations have large compound sets using the structures of a small number of
done so from the perspective of “virtual screening”, searching Known actives as probé@s®*’ Although 3D methods are

a small molecule library for compounds with similar activity Ccomputationally more expensive due to a need to consider
to a single, known, biological targé8.Our computational study ~ conformers, tautomers, charge distribution, alignment, etc., they
is designed toward a different experimental goal: identifying have arguably performed less well in comparative virtual
the molecular target for a single chemical entity, or “target Screening exercisé;'® though there are exceptio?s>* It
fishing”, based on similarity of a new compound to structures S€ems intuitive that 3D methods would include greater informa-

where activities against a broad panel of targets is already knowntion since the binding between a ligand and receptor is a 3D
(i.e., an annotated compound library). event. It should be noted that early 2D methods such as Daylight
Ongoing efforts to combine and curate databases relating largedr Unity fingerprints were initially designed to find “more of
numbers of diverse chemical structures with their biological the same” while 3D methods can enrich scaffold diversity.
activities hold the promise of revealing patterns that provide Recent work has shown the cost/benefit appears to be case
new insight into the molecular features responsible for such dependent> One goal of this work, is to examine methods for
activities. Examples of those databases are manifold, such agredicting a chemical probe’s biological target based upon
the StARLITe databaseBioPrint1° and WOMBAT! Prelimi- similarity to a reference compounah(silico “target fishing”).
nary success has recently been reported from combining large” Second goal is to examine the relation of ligand-based 3D
data setd? However, effective use of such databases dependsalignments to actual 3D receptor binding. We are particularly
on having reliable methods of relating the chemical structure interested in identifying relations between novel chemical
of the query compound to the reference compounds in the classes, through “scaffold hop¥*?” In this study, we have
database. Many methods of assigning and quantifying moleculartested two dlffgrent Zp similarity methods .(Scneglc’s Extended
similarity exist and have been recently reviewed elsewkere, Connectivity Fingerprints, and MDL'’s Public Key8f®and one

To be effective in a large pharmaceutical environment, an 3D similarity method (FEature POint Pharmacoph@t8ping
identical data to assess both overall accuracy, and versatility.
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tons. Singletons are inherently challenging for similarity meth- the centroids to create “feature points”. The distances between
ods. Specifically, we have examined potential for complemen- feature points are recorded after sorting on the basis of quadrupole
tarity between different descriptor types, by varying relevant directionality.K-medoids clustering of feature points is performed
information (that is, similar molecules) present in the database. {© find a smaller number of representative conformers. Up to seven
One hypothesis, supported by the results, is that 2D methodsconformatlons for each of five tautomers may be retained, making
are favored in c’ase of close analogues E)ut that 3D methods® maximum of 35 different 3D structures possible for each unique

T 2D chemical entry.
offer advantages below a certain similarity threshold. (D) Fishing for Chemical Diversity with 3D Descriptors. I.

> Methods Nearest Neighbor Misses (NNmiss). A subset of the probes from
) the “All WOMBAT"” dataset that did not achieve target matches
(A) Database, Bioactivity Data, and Database Preparation. using 2D similarity criteria (see Results) was selected for additional
WOMBAT 2005.1 (WOrld of Molecular BioAcTivity) databas¥., 3D searching. The rationale for working with this subset was 3-fold.
containing over 100 000 unique structures described as SMILES First, we wanted to assess 3D performance in cases where 2D fails.
and over 240 000 biological activities in separate ISIS databases,Second, the smaller number of probes reduced computing times
was merged into a single delimited text file for manipulation and and allowed for multiple conditions to be examined as described
analysis in PipelinePilot 5.8.To reduce artifacts from nonspecific  in the next section. Third, using a randomly selected subset of the
binding, only those compounds having measureg &ctivity <30 total nearest neighbor misses as probes left the remainder of the
um were used in our current analysis. The final groomed database2D misses in the 3DDD. Since certain target classes have
contained 47 505 unique chemical structures associated with 544representatives with low 2D similarity in the parent database, this
biological targets. The frequency of molecules affecting specific criteria was important for reasonable evaluation of 3D performance
targets ranged from 1281 to 1. A target class with only 1 member (see Discussion).
cannot be located with our procedure because “self” is removed Il. Similarity Filters. To explore the added value of the 3D
from the comparison. However, they were left in to serve as decoys FEPOPS method for finding correct probe/reference pairings with
during the search. low structural similarity, the NNmiss set of probes (see Results
(B) 2D Target Fishing: MDL Structural Keys and ECFP_6 and Discussion) was run multiple times against the 3DDD with
Fingerprints. I. Al WOMBAT: The 2D similarity protocols, using different filters. The initial test ran the NNmiss probe set against
each descriptor type, were run against the groomed database usinghe full 3DDD with only the probes removed. Separate runs
the complete set of 47 505 chemical structures as probes. subsequently removed sets of compounds having similarity scores
II. 5%WOMBAT: A smaller probe set of 2351 molecules to the probes greater than ECFP 0.85, MDL 0.85, MDL 0.80, and
reflecting a randomly chosen 5% of the entire chemical library was MDL 0.60 from the 3DDD when searched.
generated using the Random Percent Filter in Pipeline Pilot. Second 1ll. Probe for related chemistry/biology: ATP WOMBAT. A
runs against the full database were performed with the 2351 typical prospective exercise for “target fishing” would be to use a
molecules set using both 2D descriptor types. single molecule with observed activity as a probe to identify possible
2D descriptors for all compounds were computed using both binding partners. As an example, FEPOPS descriptors were
MDL public keys and SciTegic’'s Extended Connectivity Finger- calculated for ATP and used to identify potential targets based upon
prints (ECFP_6) in Pipeline Pilot. Pairwise similarity comparisons 3D similarity to other molecules in the WOMBAT 3DDD. The
between the compounds were done with SciTegic’'s Tanimoto use of such a highly flexible probe molecule was intended to explore
component. Both the first and second “nearest neighbor” for each 3D’s ability to located correct functional targets based upon difficult,
probe, with Tanimoto similarity<0.99, were flagged for subsequent low similarity, reference structures.
evaluation. Only the first nearest neighbor was used as the reference (E) Modeling of 3D Ligand Alignments in Biological Space.
compound for target identification and numerical scoring. I. Analysis of Biostructural Correlation. Molecular pairs with correct
(C) 3D Target Fishing: FEPOPS.All 47 505 unique com- target matches from FEPOPS 3D NNmiss comparisons were output
pounds were input as SMILES strings. FEature POint Pharma- from Pipeline Pilot as SD files and input to MOE 2005.06 for
cophoreS (FEPOPS) were calculated as described below and storedtructural analysi& The goal of this exercise was to examine the
as text in a 3D descriptor database (3DDD) yielding 815 676 records binding mode for probe/reference drug pairs having dissimilar
with compound IDs and associated feature point information. chemical scaffolds, but similar biological activity. A custom SVL
Similarity was determined by calculating Pearson correlations script was used to search the Protein Data Bank (PDB) for protein
between the four atomic feature points of each probe/referencetargets that contain bound ligands with high structural similarity

pair3t to probe/reference pairs identified by FEPCP®DB searching

I. All WOMBAT: 3D analysis was not run on the full data due was performed using the prebuilt PDB_05_04.mdb as provided in
to computational expense. MOE 2005.06.

II. 5% WOMBAT: The same 2351 chemical structures, used for  1l. Mapping of FEPOPS Centroids. Atom IDs associated with

the 2D comparison, were expanded with all FEPOPS conformer/ feature points used for alignments were output from FEPOPS as
tautomers, as described below (40 852 entries), and compared tamol2 files. These atom IDs were used to define centroids associated
the residual set of 774 824 descriptors. (Since we are search thewith a crystallographic or modeled ligand structures using Unity
database against itself, if probes are not removed the algorithm will in Sybyl7.1. For the experimental systems described below, a spatial
find the probe itself as the closest reference structure.) The singleconstraint was projected from each centroid and color coded to
compound having the maximal Pearson correlation of FEPOPS match the FEPOPS assignment. (The current version of the FEPOPS
descriptors to the probe was selected as the reference for targeglgorithm returns a mol2 with the atom IDs for the fit conformer/
assignment. Analysis of the 40858 774824 system takes tautomer but not the actual coordinates. A feature returning

approximately 17 h on our Pipeline Pilot server. coordinates with IDs is under development.)
The FEPOPS descriptors were computed for each database entry a. Modeling of Estrogen Receptor Ligands. Crystallographic
according to the method of Jenkins et?&alsing this method, coordinates of the estrogen receptor (ER) complexed with both the

compounds are preprocessed to generate 3D structures, assigmolecular probe 1p-estradiol (Scheme 1), 1a52.pdb, and the
protonation states, enumerate tautomers, and calculate partiakeference compound diethylstilbestrol (2), 3erd.pdb, were down-
charges and atomic Idgvalues. Multiple conformers are generated loaded from the PDB. Backbone atoms of residues Ser305-Phe461
by systematic rotation of flexible bonds. Ligand atoms are (628 atoms) were aligned using the “Match” function in Syby 7.1
partitioned into fourk-mean clusters based upon their spatial with an RMSD of 0.86A. FEPOPS centroids were mapped directly
coordinates. Centroids are defined from the atoms of each cluster.to the aligned experimental structures.

Partial charges, 108, and hydrogen bond donors and acceptors of  b. Modeling of Retinoid Receptors Ligands. A 3D model of the
the atoms belonging to each cluster are summed and encoded intanolecular probe targretin (Scheme 2, compo&phdias generated
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Scheme 1
FEPOPS 3D match
Estrogen Receptor Agonist
(1) 17B-estradiol (E,)
2D match CH
miss target OCHzCHz"(c 3
binds tubulin H,
Estrogen Receptor
R Antagonist
HO HO
(3a) R=1 2-iodoestradiol i
(3b) R=Me 2-methylestradiol (4) 4-hydroxytamoxifen (OHT)
Scheme 2 Table 1. Results of “Target Fishing” Using 2D and 3D Chemical
E Descriptors
total total match miss %
‘O O FEPOPS 3D match probes reference target target success
OH BindsRXR o “N=lo All WOMBAT 47505 47505
_ o 2DNN (ECFP-6) 47505 47505 42511 4994 89.5
Targretin (5) HO 2DNN (MDL) 47505 47505 41224 6281 86.8
3D FEPOPS - - - - -
2D match 7 5% WOMBAT 2351 47505
Miss taraet 2DNN (ECFP-6) 2351 47505 2118 233 90.0
binds RAR 2DNN (MDL) 2351 47505 2046 305 87.0
H 3D FEPOPS 2351 45154 1588 768 67.5
N—N \WV4 NNmiss 339
S \ 2DNN (ECFP-6) 339 47505 0 339 0
O ‘O O FEPOPS- self-filter 330 47166 109 230 32.1
OH OH FEPOPS< 0.85 ECFP filter 339 46933 91 248 26.8
® o o FEPOPS< 0.85 MDL filter 339 43689 69 270 20.3
LG268 (8) FEPOPS< 0.80 MDL filter ~ 339 41103 61 278 18.0

by modifying the cyclopropyl moiety of compound LG268 @s FEPOPS< 0.60 MDL filter 339 5626 13 32 40

found in complex with the receptor in 1h9u.3éko the alkene of

5. The new model was minimized using the Tripos force field to & 3 Results and Discussion

gradient cutoff of 0.05 kcal/mol. The minimized modelodiffered

from the bound structure o8 with a RMSD of 0.21A for all 2D and 3D Target Fishing. The 2D Nearest Neighbor

conserved atoms and was used to map FEPOP centroids. (2DNN) analysis was performed using MDL and ECFP descrip-
The reference compoundwas built in MOE and minimized  tor keys as described in Methods and was run on both the full

using the MMFF94x to a gradient cutoff of 0.05 kcal/mol. A and 50 data sets. Raw numerical results are presented in Table

stochastic search of conformational space was performed in MOE 1 A control comparison illustrating compound distribution in

with the following settings (bond rotation bias-30, Cartesian the All WOMBAT and 5% WOMBAT dataset as a function of

Perurbation Delta 0.001, Cartesian Minimization RMS Gradient .~ . " . . -

similarity are shown in Figure 1. 3D FEPOPS results using the

0.01, Energy Cutoff 7, Conformation Limit 1000, Failure Limit o N
20, Iteration Limit 1000, RMS Tolerance, MM Iteration Limit 200). 9¥0WOMBAT probe set and the 2DNN (ECFP-6) “Miss Target

Results were aligned, yielding two conformational clusters. FEPOPS With applied 2D filters are also given in Table 1.

centroids were mapped to the two lowest energy conformations  Figure 1 shows the composition of both the full database and

representing both conformational clusters (relative energy difference the 5% set, using both 2D descriptors. MDL and ECFP_6 keys

1.14 keal/mol). were used to calculate Tanimoto similarity between each
FEPOPS centroids were mapped to each conformer, and eachcompound and its nearest neighbor in the full (blue) and 5%

was aligned to the centroids &f and evaluated as described in (red) WOMBAT data sets as described in methods. The

Results and Discussion compounds were placed into one of 10 bins based upon

c. Modeling of ATP/Balanol. Coordinates of protein complexes ~." ..
latp.pdb andglbx6.pdb were downloaded from?he PDB. Bgckbones'm”a”ty scores between 0 and 1. The MDL keys cluster 80%

atoms of residues Val15-Trp196 (728 atoms) were aligned using Of Compounds in both the full and 5% database into the bin of
the “Match” function in Sybyl 7.1 with an RMSD of 0.92A.  0.90 or greater similarity. The number of compounds with
FEPOPS centroids were mapped directly to the aligned experimentalnearest neighbors less than 0.80 similarity represent less than
structures. 5% of the total databases. ECFP keys show that the greatest
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Figure 1. Comparison of data sets used in target exercise. Heights of blue bars indicate the fraction of molecules, in all of WOMBAT, having a
nearest neighbor (NN) with similarity greater than or equal to the range representedX@witisevalue. Height of red bars displays the proportion

of similar molecules in a randomly selected subset as compared to all of WOMBAT. The close correlation using both MDL and ECFP descriptors
suggests that results from searches performed using the 5% subset can represent results from the whole database.

population of neighbors has similarity between 0.70 and 0.80 The 3D FEPOPS analysis was performed using the same 5%
with a distribution on either side of that maximum. Like that probe set as was used for the 2D analysis. A cursory examination
shown with the MDL keys, there is a small population of of the raw percentage of successful results returned from our
compounds in the database that have no similar neighbor, thecomparative exercise (ECFP 90%, MDL 87%, FEPOPS 68%)
singletons €0.40 ECFP<0.80 MDL). The similar distribution may tempt one to conclude that silico methods for target

of molecular pairs from this figure, along with the numerical fishing are highly effective, that 2D descriptors significantly
results given in Table 1, suggests that the 5% set adequatelyoutperform 3D, and that there is little difference between the
represents the full dataset, for use in the 3-way comparison 2D methods testedeeper analysis rgeals important qualifiers
including the 3D method. to those three assertions.

Figure 1 also illustrates that there is significant difference  Figure 2 highlights the relative performance of each of the
between the ECFP fingerprints and MDL public keys descrip- 2D descriptors compared to the 3D method based upon the
tors. The MDL public key method was one of the first and is topological similarity between the probe and reference com-
still a widely used tool in cheminformatiThe “Public” keys pound used to determine its target. Tanimoto similarity for 1588
describe a chemical entity based upon the presence or absenceorrect 3D FEPOPS matches was computed using both ECFP-6
of 166 substructural fragments from a predefined library. The and MDL descriptors and plotted beside the results obtained
Extended Connectivity FingerPrint (ECFP) is a representation using that 2D method. Light green and dark green bars illustrate
assigned based upon each atom and its structural neighbors anthe comparable performance of ECFP keys for prediction of
belongs to the group of circular fingerprirts3>The fingerprint targets in both the full WOMBAT database and the 5% random
is built iteratively by adding bits that represent larger and larger sample. The yellow bars associated with the 3DMS(FEPOPS)
substructures to the features from all the previous steps.pairing show low correlation with 2D similarity. In fact,
Accordingly, ECFP may assign thousands or millions of bits FEPOPS finds approximately 75% correct matches across the
to describe a given molecule. The difference shown between most populated chemistry space, 940 ECFP (see Figure 1
Figure 1a and 1b reflects this variation of assignment method and discussion in text). The performance of 3D(FEPOPS)
used. It should be noted that the lower Tanimoto similarity exceeds the 2D in correct matching for similarity pairings less
values for ECFP relative to MDL is a function of different than 0.4 ECFP. The blue bars, in Figure 2b, showing correct
scales. Tanimoto values should only be compared when matching of target pairs using MDL descriptors marks dra-
computed using the same method. The granularity of separationmatic decline in performance with decreasing similarity. The
between similar compounds is much greater for the ECFP 3D(FEPOPS) method out performs the MDL 2D descriptors
method than the MDL method, but, probably due to the for values less than 0.80 MDL. The similarity dependence of
congeneric nature of our data, this does not significantly affect 2D methods is also suggested by results from a recent study
performance. [See Table 1: Al WOMBAT Match Target (ECFP which built multiclass Laplacian-modified naive Bayesian
42 511 correct, MDL 41 224 correct)]. Given a differently models trained on WOMBAT using ECFP keys but probed with
distributed set of probes, they may not perform equally. For MDL Drug Data Report (MDDR) compound8.That study
example, in a study of similarity-based virtual screening using reported a 77% success for prediction of targets, however,
MDDR compounds, ECFP circular descriptors were found drawing a direct numerical correlate from that work is compli-
superior to structural key descriptdr's 35 cated by inherent differences of annotation between the two

The performance of both types of 2D descriptors in our 5% databases used and details of data preparation.

WOMBAT analysis (success ECFP-6 90.0%, MDL 87.0%) may  To test the potential of 3D as a compliment for 2D methods,
be elevated due to the composition of the reference databasewe randomly selected a small subset of the compounds that
Since WOMBAT is primarily comprised of congeneric series failed to match using 2DNN (ECFP-6) (NNmiss) for further
from chemistry programs reported in the literature, the high FEPOPS analysis. The raw numerical results for all cases are
percentage of molecules with a close 2D neighbor and samepresented in Table 1. For the NNmiss set with only a “self’
target is to be expected. If our probes had not been pulled fromfilter, 3D resulted in 32.1% success compared to 0% for 2D. A
the same congeneric sets, it is likely that there would be at leastdetailed examination of these results showed that the matches
a small reduction in overall performance of the 2Dsilico found by 3D were still quite similar in 2D chemical space. As
methods. one of our goals was to explore the 3D method’s ability to bridge
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Figure 2. 2D and 3D success for target prediction as a function of 2D similarity. The similarity between probe and reference pairs used to
successfully predict biological targets are compared measures of 2D similarity. The 2D similarity of matching pairs obtained using 3D FEPOPS
were calculated using ECFP-6 (a) and MDL public keys (b). The 3D FEPOPS results are displayed as gold bars on the same graph with results
from the particular 2D method.

distant chemical spaces that share biological function, we To test FEPOPS ability for predicting a biologically relevant
systematically removed molecules with 2D similarity to the pharmacophore from only the chemical description, we searched
probe from the reference database before searching. Consisterfor examples having experimental crystal structure complexes
with the population distributions of similar compounds shown that contained both our probe and reference structures.
in Figures 1 and 2 and discussed earlier, we found that the results Estrogen Receptor Endogenous estrogens such as estradiol
of filtering above the 0.85 level using either 2D descriptor did (E,) (1, Scheme 1) exert their physiological effects by binding
not return appreciably better structural diversity. There were a to estrogen receptors (ER), inducing nuclear translocation, and
sufficient number of similar molecules left in the database for increasing transcriptioff The synthetic nonsteroidal compound
3D to pick them as the closest match. When we used MDL diethylstilbestrol (DES) Z) found by our 3D target fishing
filters that removed all molecules from the 3DDD with similarity protocol also binds to ER with high affinity and similarly
less than 0.80 from reference set, the results changed signifi-increases transcriptional events. By mapping FEPOPS-defined
cantly. The full results set with structural drawings and 2D centroids onto the structural complexes ofdhd DES bound
Tanimoto indices for the 3D similar pairs in the 0.80 and 0.60 to ERx, we can see the similar alignment of chemical features
analysis are shown in the Supporting Information (SI). associated with the program’s correct prediction of biological
The idea that a ligand centric 3D method may play a role in target, Figure 3a,#*3The coloring scheme (red, green, blue,
understanding the similar biological activity of structurally violet) represents the algorithm’s assignment of feature point
dissimilar drugs has precedent in the literature. Inverse docking (FP) number based upon the chemical properties of the
protocols have been used to identify potential targets, using smallunderlying atoms. Atoms defined as FP 1 for each these
molecule probed’ but this is limited by the availability of =~ compounds are found similarly located in a charged, polar
receptor structures for the targets of interest. Pharmacophoreenvironment of the receptor. The atoms assigned within FP 2
and 3D-QSAR-based methods have also shown promise for both(green) present a hydrogen bond donating group within an
identification of potential nontarget interactions and scaffold otherwise hydrophobic portion of the site. Of course, the
hopping within a given target but have a dependence upon thesymmetry of DES makes distinction between atoms of FP 1 vs
external knowledge used to train the mod&I&In the case of 2 and FP 3 vs 4 only possible relative to its alignment with the
target fishing, one may not have external data, and the targetasymmetry of & The significant differences of structural
information would need to be decoded from a single chemical scaffolding presenting FP 3 (blue) and FP 4 (violet) in the two
probe. Although not explicitly attempting target identification, molecules highlights the utility of the 3D method. The 2D
others have projected distance-based pharmacophoric feature$animoto similarities between these molecules are 0.42-MDL
from the topology of a pro¥&26 or used explicit shape and and 0.13-ECFP while the 3D Pearson correlation of the feature
electrostatics as descriptors for recovering acttté8FEPOPS  points is 0.91.
are an inherently fuzzy description of a molecules potential We immediately questioned why the 2D similarity had
shape(s) and chemical space. As described in Methods anderroneously predicted the target given such a heavily studied
earlier work by Jenkins et al., the feature points are representa-system as ER. Compoundda and 3b of Scheme 1 with
tive of clusters of conformations available to different tautomers similarities of 0.62, 0.60 (ECFP_6) 0.89, 0.97 (MDL) were the
of the small moleculé® This approach is very fast compared first and second nearest neighbors ef(B. It has been shown
to 3D-QSAR or structure-based methods and can compare allthat the estrogenic properties of Fre diminished by O-
tautomer/conformer representations of a single probe to all methylation at the 2 position, and other substitutions, such as |
815 676 records of our 3DDD to produce a ranked alignment or Me, likewise change the binding preference of the compounds
of features in approximately 2 min. In the current application from ER to tubulin** The 3D-FEPOPS alignments of these
of the method, each representation holds four spatially separatednolecules with Pearson coefficients of 0.89 and 0.83 reverses
feature points that are associated with specific atoms of the smallthe orientation of the fused ring system 2&fllong the axis
molecule. We hypothesized that the maximally overlapped between the diols, suggesting that these molecules would not
feature points derived from exploring the chemistry space of have the same binding mode. The large effect of small changes
molecules that affect the same target should correlate with theat the 2-position upon target specificity underscores the 3D
biological space of the actual target. nature of the binding event and an inherent limitation of 2D
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Figure 3. FEPOPS chemical space alignment in experimental biological space. Estrogen receptor (ER) aggrestsddipl as bound in 3erd.pdb
and (b) diethylstilbestrol; DES, as bound in 1a52.pdb. Centroids, displayed as 2.5 A diameter spheres, were computed from the crystallographic
coordinates using the FEPOPS feature point atom definitions represented in the color coded structural drawings as described in the main text.
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Figure 4. Chemical feature points in receptor space as models of biological function. FEPOPS centroids of the RXR selectig\aganisied

to align the RXR selective antagonis{see Scheme 2) in the context of the biological receptor. Retinoid receptor (RXR alpha) agonists probe (a)
targretin and top FEPOPS hit; (b) diethylstilbestrol, DES, as modeled into structure 1h9u.pdb. Comp@swhodeled into the protein structure,

as described in Methods, using the bound ligand surrogate shown. Centroids, displayed as 2.5 A diameter spheres, were computed from the model
coordinates using the feature point atom definitions as represented by the color coded structural drawings. The FEPOPS centroids defined by the
low energy conformations & were used to position the molecule in the binding site.

similarity descriptions alone. Likewise, compourd is a
variation of the clinical antiestrogen Tamoxifen that builds upon
the structural framework of compourad Although4 can bind
similarly to 2, additional bulk at the 7 position induces positional
change of a helix within the receptor such that it inhibits the
binding of a coactivator peptide needed for downstream
signaling?3 This general idea of directed 3D effector regions is
expanded in the next example.

RXR Receptor. The retinoid receptors, characterized by the
subfamilies of retinoic acid receptors (RAR) and retinoid X

Targretin §), shown in Scheme 2, was one of the earlier
molecules discovered with selectivity for the RXR family of
receptors and was incorrectly assigned RAR activity based
upon 2D similarity to the weak RAR antagon&t® FEPOPS
correctly assigned RXR binding &through identification with
compound?, also known to be RXR selectiv8as the closest
3D match. Although Tanimoto scores of 2D similarity (0.53-
MDL, 0.09-ECFP_6) are very low, the Pearson coefficient of
distances between the aligned FEPOPS ahd7 is >0.92. It
is important to note that only 22 molecules annotated as RXR

receptors (RXR), serve as obligate binding partners in many specific exist in over 41 000 compounds queried. The correct

cell signaling pathways affecting, cell differentiation, prolifera-
tion, and tissue homeostadfsTwo forms of retinoic acid are
primarily responsible for the varied biological responsé-
transretinoic acid (ATRA) binds exclusively to RAR, while
9-cis-retinoic acid (9eis-RA) is primarily responsible for RXR
signaling along with RAR activation. Improving selectivity of
retinoid targeted drugs is pivotal for improving their medical
use?5:46

selection of this target has a less than 1:1800 chance of occurring
randomly. The 3D method appears to be locating some
significant chemical/biological relationships that are not obvious
from the underlying 2D structure. Figure 4 illustrates the
FEPOPS defined overlap in the context of the RXieceptor.
Importantly, FP one, two (red and green) and three, four (blue
and violet) align in a way consistent with the bent cis geometry
of its endogenous ligan®.As described in Methods, our probe
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Figure 5. Cyclic AMP-dependent protein kinase (PKA) with bound ligands. (a) ATP as found in latp.pdb, and (b) balanol in 1bx6.pdb. The color
coded chemical drawings of each molecule illustrate the atomic alignments derived during the 3D FEPOPS target fishing protocol. The corresponding
colored spheres, of 3A diameter, illustrate the positioning of FEature POint PharmacoPhoreS when mapped into the crystallographic coordinates.

5 was modeled using the complex of structurally similar LG268 ligand with complimentary residues of the protein have been
(8) with RXRp;34 however, the unusual scaffold @fwas not given previously? Although FP 2-4 have ligand/side-chain
available in the PDB. We used the two best scoring FEPOPS interactions that map directly across the two complexes, the
alignments to define centroids for the lowest energy conforma- negatively charged atoms of ATP’s FP1 (red) accepts hydrogen
tions of 7.5 An internal energy difference o2 kcal/mol bonds from donating side chains in the bottom of the pocket,
between the conformers suggest that either might be viablewhile balanol's FP1 atoms accept hydrogen bonds from
candidates for binding. Figure 4 illustrates the two conformers backbone amides of the flexible glycine rich loop above the
(7ab) and the color coded atom alignments. Although atom ligands. This pharmacophoric overlap illustrates the utility of
assignments of FP 1 and 2 are identical in the 2 top scoring chemical descriptors that are not dependent upon the graph of
alignments, free rotation between the substituted phenyl ringsthe molecules. By searching flexible chemical space for
of 7 allows two different, high scoring solutions for FP 3 and 3-dimensional alignments, the method has found nonobvious
4. The reversal of FP 4 and FP 3 suggested by the top twoways of bridging the biological space of the target molecule.
predicted alignments places the 3-fluoropropyl moiety efther This appears particularly important for this system that involves
into or out of the binding pocket. Without an external reference, significant spatial repositioning of the protein binding site. The
the FEPOPS results would best suggest the alignment of FP 1“fuzzy” nature of the feature point alignment is a strength that
and 2 but allow two options for FP 3 and 4. Given external allows it to accurately describe the general receptor environment
knowledge gained from the ER systems, we can present aof even flexible targets such as kinases. The enhanced perfor-
hypothesis. Compoun8lis a selective agonist for RXR while  mance of a different ligand-based 3D method compared to
7 is an antagonist, a situation analogous to DESnd OHT, docking methods used for CDK2 supports the general usefulness
4. The modeled binding mode afb illustrated in Figure 4 of such an approach.
projects the 3-fluoropropyl moiety out of the binding groove in .
the same receptor space relativétas the side chain cfis to 4. Conclusions
2 in experimental solutions of the ER compleXésThat We have used 2D and 3D methods of chemical description
comparison of Shiau et al. suggests that antagonism in ER resultgo search an annotated chemogenomics database for relationships
from ligands that bind similarly to agonist, but with additional to specific biological targets. We have shown that high 2D
molecular features that disturb positioning of coactivating helix chemical similarity to a reference structure is a very good
12 responsible for downstream signaling. The tissue specific predictor of similar biological targets; however, there are limits
agonism/antagonism of various drugs is likely due to noncon- to that effectiveness. This work shows that ECFP-6 descriptors
served protein side chain residues, outside the binding groove,sharply decline in predictive efficacy for neighbors with
that alter the position of the antagonizing feature relative to the Tanimoto similarity indices less than 0.40 while MDL public
ligand’s core. Since RXR also requires alignment of its helix keys decline at indices<0.80. The 3D FEPOPS method of
12 outside the pocket for activation, a similar mechanism of a description tested here was not able to achieve as high a
3D-directed effect seems plausible. percentage of correct prediction compared to 2D methods at
PKA Receptor—ATP/Balanol. Given the initial success similarity thresholds higher than those just described. However,
using 3D to fish WOMBAT for targets associated through the 3D method did outperform the 2D method below those
dissimilar scaffolds, we cast a larger net using ATP as a probethresholds, escaping clear correlation of performance to the
and pulled back the top 30 targets predicted by FEPOPS. underlying similarity of the chemical graph. These target fishing
Analysis of scaffold diversity associated with correct matches results have analogy to earlier experiments which show in-
revealed that three of the pairings, PKA, PKC-beta-1, and PKC- creased enrichment of chemotypes in 3D vs 2D virtual screen-
eta, were a variation of the same scaffold containing no ing.3%5354This is of particular importance when the chemotype
phosphates, adenine, or ribose moieties, balanol. Figure 5 showsf the query is missing from the reference database. The 3D
the FEPOPS alignment along with the crystallographic align- method also demonstrated an ability to align chemical features
ments of ATP and balanol bound to PKA (1atp.pdb, 1bx6.pdb). in space similarly to those found in biological complexes.
The natural product, balanol, is a potent inhibitor of serine and Though successful, a caution is raised by the RXR example
threonine kinases that competes with ATP for the same bindingthat the whole molecule overlap of chemical space is not
site. Detailed descriptions comparing the interactions of each necessarily the best descriptor of biological function. A knowl-
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edge-based distinction between a reference chemical binding (13) Bender, A.; Glen, R. C. Molecular similarity: a key technigue in

and effecting regions may be required to separate functions such
as antagonism and agonism. We have only tested one method

of 3D description here. More extensive studies, comparing
several 3D methods, may lead to overall improvements in
performance. We believe additional work is merited, as our

molecular informaticsOrg. Biomol. Chem2004 2, 3204-3218.

(14) Barnard, J. M.; Downs, G. M. Clustering of Chemical Structures on
the Basis of Two-Dimensional Similarity Measurgs.Chem. Inf.
Comput. Sci1992 32, 644-649.

(15) Matter, H.; Potter, T. Comparing 3D Pharmacophore Triplets and
2D Fingerprints for Selecting Diverse Compound Subskt€hem.

Inf. Model.1999 39, 1211-1225.

results support the idea that slower 3D methods can be (i6) Bender, A Mussa, H. Y., Glen, R. C.; Reiling, S. Molecular

effectively combined with 2D.

Although 90% of the tested compounds were correctly related
to their biological target by at least one of the 2D methods, the 17)
analysis points out that the high performance was in a large
part due to the congeneric nature of the data used. It also
indicates that more than one neighbor should be considered for

target identification in actual project work. Likewise the

FEPOPS 3D method was able to correctly predict targets for a

subset of those failing 2D comparison, but the overall lower

fidelity indicates that its use should be reserved for second phase

analysis in the case of very low neighborhood similarity. Clearly,
no single method of chemical description is “best” in terms of
functionally bridging a molecule with its biological activity.
Fortunately, large compilations of chemical and biological data
such as WOMBAT and others may provide sufficient test sets
for developers to identify and correct specific deficiencies in
new versions. We expect that combining different methods of
2D and 3D description with external learning frameworks such
as Bayes Affinity Fingerprint8 will be particularly useful for
defining the particular chemical features responsible for biologi-
cal activity and the spatial alignment necessary for their function.
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